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The copper protein, dopamine (3-monooxygenase (DBM, E. 
C. 1.14.17.1) catalyzes hydroxylation at the pro-R hydrogen of 
dopamine to form norepinephrine in a variety of mammalian 
tissues.1"4 We and others have shown that DBM also readily 
catalyzes benzylic oxygenation of functionalities such as carbon 
(saturated or unsaturated), carbinol, sulfur, selenium, or nitrogen 
in a variety of substrate analogues,5"17 and the mechanism of DBM 
catalysis has been the subject of much recent interest.912'18"22 We 
now report the first example of allylic oxygenation by DBM, and 
we demonstrate that this reaction is highly facile and stereose­
lective, with the absolute configuration of the product corre­
sponding to that previously established for benzylic hydroxylation3 

and sulfoxidation5 by DBM. 
In view of the well-known physico-chemical similarities of allylic 

and benzylic systems,23 2-(l-cyclohexenyl)ethylamine (CyHEA) 
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Figure 1. Configuration correlation models and FT NMR spectra of 
(S')-O-methylmandelic acid esters of (R)- and (S)-I-(I-cyclohexenyl)-
2-aminoethanols. The proton resonance for the vinyl proton was iden­
tified by NMR decoupling, (a) The extended Newman projection for 
diacylated (./?)-l-(l-cyclohexenyl)-2-aminoethanol. (b) The extended 
Newman projection for diacylated (5)-l-(l-cyclohexenyl)-2-amino-
ethanol. (c) FT NMR spectrum of /V-[(S)-a-methoxyphenylacetyl]-
O- [(S)-a-methoxyphenylacetyl]-1 -(I -cyclohexenyl)-2-aminoethanol (slow 
eluting diastereomer). (d) FT NMR spectrum of A^-KSJ-a-methoxy-
phenylacetyl]-0-[(S)-a-methoxyphenylacetyl]-l-(l-cyclohexenyl)-2-
aminoethanol (fast eluting diastereomer). (e) FT NMR spectrum of 
N-1 (S)-a-methoxyphenylacetyl] - O- [ (S) -a-methoxyphenylacetyl] -1 - (1 -
cyclohexenyl)-2-aminoethanol (enzymatic product). 

was chosen as the prototypical substrate for allylic hydroxylation, 
since it shares a number of structural similarities with 2-phen-
ethylamine. DBM was isolated from bovine adrenal medullae 
and purified as described previously.9'24 Kinetic parameters for 
CyHEA turnover were found to be &cal = 90 s"1 and KM = 6.1 
mM under standard turnover conditions. These values represent 
highly facile turnover, comparable to those for the most highly 
active DBM substrates known to date.25 

Preparative scale enzymatic reaction allowed product isolation 
by preparative TLC after derivatizing enzymatic reaction mixtures 
with succinimidyl-4-nitrophenylacetate (SNPA),9 and the product 
was identified as l-(l-cyclohexenyl)-2-[(4-nitrophenyl)acet-
amidojethanol on the basis of FT NMR and mass spectrometry 
[1H NMR (5, CDCl3) 7.83 (dd, 4 H), 5.8 (br s, 1 H), 5.65 (m, 
1 H), 4.04 (br s, 1 H), 3.45 (s, 2 H), 3.2-3.6 (m, 2 H), 1.4-2.1 
(m, 8 H); mass spectrum (EI) M+ 304]. An oxygen/ascor-
bate/product stoichiometry of 1:1.2:1.1 was determined for Cy-
HEA oxygenation by quantitative comparison of oxygen con-
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sumption [measured polarographically9], ascorbate consumption 
[measured by HPLC/EC10], and allylic alcohol product formation. 
These quantitative experiments confirm that 2-amino-l-(l-
cyclohexenyl)ethanol (CyHEA-OH) is the only product formed 
during enzymatic turnover. Similarly, trapping experiments with 
the epoxide trapping agent 4-(p-nitrobenzyl)pyridine (NBP)9 

confirmed the absence of epoxide products. Thus, DBM processing 
of CyHEA gives rise only to allylic hydroxylation at C-2, and 
neither epoxidation nor allylic rearrangement is observed.26 

The absolute configuration of the enzymatic product was de­
termined with the elegant method of Mosher et al.27a,b Upon 
derivatization of racemic synthetic CyHEA-OH28 with (S)-O-
methylmandelic acid, two diastereomeric derivatives were obtained 
which were separated by preparative TLC by using 45% ethyl-
acetate in hexane. HPLC analyses on silica gel showed that the 
similarly derivatized enzymatic product yielded only material 
which co-eluted with the slow eluting diastereomer of synthetic 
CyHEA-OH. The (S)-Omethylmandelate derivatives were then 
examined by NMR, and the signal arising from the vinyl proton 
was identified by NMR decoupling experiments. The vinyl proton 
of the fast eluting diastereomer appeared at 5.69 8, while that of 
the slow eluting diastereomer appeared at 5.32 8 with an upfield 
shift of 0.375 ppm. Using the Mosher model (Figure 1), the slow 
eluting isomer having the upfield vinyl NMR signal was assigned 
an absolute configuration of R, while the other isomer was assigned 
the 5 configuration. Thus, enzymatically produced CyHEA-OH 
is assigned an absolute configuration of R, and no (S)-CyHEA-
OH is detectable by HPLC, TLC, or NMR. 

There is evidence that DBM oxygenation of benzylic olefinic 
and heteroatom functionalities proceeds via initial electron ab­
straction to give a substrate radical cation.9,10,12 Thus, the absence 
of epoxide products from oxygenation of CyHEA by DBM— 
implying an inability of the activated copper-oxygen species to 
effect radical cation formation from a nonconjugated olefinic 
moiety—is consistent with the well-known difference in oxidation 
potential and reactivity between conjugated and nonconjugated 
olefins.29 On the other hand, it is well known that allylic and 
benzylic C-H bonds exhibit strikingly similar chemical reactiv­
ities.23 This suggests that the probable mechanism for allylic 
hydroxylation of CyHEA is analogous to that proposed for benzylic 
hydroxylation of phenethylamines, i.e., hydrogen atom abstraction 
to form a resonance stabilized benzylic (or allylic) radical.19 

Groves and co-workers30 found that cytochrome P-450 catalyzes 
both epoxidation and allylic hydroxylation of cyclohexene, and 
they propose that epoxidation by P-450 proceeds via an olefinic 
cation radical whereas allylic oxygenation proceeds via an allylic 
radical. However, they observed that allylic hydroxylation of 
cyclohexene is accompanied by allylic rearrangement and that 
methylenecyclohexane gives rise to both 2-methylenecyclohexanol 
and 1-cyclohexenylmethanol. In contrast, we find that allylic 
hydroxylation of CyHEA by DBM proceeds without rearrange­
ment. It is possible that geometric constraints at the DBM binding 
site prevent interaction of the activated oxygen species with carbon 
centers in the cyclohexene ring. However, we have also observed 
that DBM catalyzes allylic hydroxylation of m-2-hexenylamine 
with hydroxylation occurring cleanly at C-4 and without any 

(26) As with many DBM substrates9,12,14 examination of the time course 
of CyHEA oxygenation reveals that time-dependent enzyme inactivation 
occurs with apparent kinetic constants kima = 0.33 min"1 K1 = 82.5 mM. 
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detectable allylic rearrangement.31 These results may be sug­
gestive of a mechanism in which copper interacts with the olefin 
moiety during the catalysis, thus precluding rearrangement of the 
double bond. Such copper-olefin interactions have been proposed 
to account for the lack of allylic rearrangement in oxidation by 
peroxides in the presence of copper salts.32 

The demonstration of facile, stereoselective allylic hydroxylation 
by DBM suggests new possibilities for the design of inhibitors and 
pseudo-substrates for this enzyme, a goal which is being actively 
pursued in a number of laboratories.33"37 
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We report here evidence that the Bronsted /3 coefficient of 1.0 
for deprotonation of a sulfonium salt overestimates the amount 
of bond formation to the base catalyst in the transition state; in 
the reverse protonation direction a = 0 underestimates the degree 
of proton transfer from the acid catalyst. Proton transfers to and 
from carbon occur directly2"4 so that an acid catalyst must break 
a hydrogen bond to water before it can protonate a carbanion. 
We suggest that a value of ad ~ -0.2 for desolvation offsets a 
= 0.2 for protonation to give aobsd = 0; /3obsd is then 1.0. This 
estimate is supported by the dependence on phenol acidity of AG 
for transfer of phenols and substituted benzenes from the gas phase 
to water. Similar effects of hydrogen bonding on the nucleophilic 
reactivity of bases have been reported.5,6 

Figure 1 shows that the Bronsted plot for 1H and 3H exchange 
of dimethyl-9-fluorenylsulfonium tetrafluoroborate (1) in D2O7 

CH 3 ^ C H 3 

"BF 4 
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